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ABSTRACT 

The d e n s i t y  mat r ix  d i r e c t e d  second o rde r  MCSCF algori thm is reviewed. 

The ra te  of convergence i s  d iscussed  and several examples are given, showing 
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- ex *T + f + 4 2 - 
"m The dens i ty  matr ix  d i r ec t ed  (DHD) second 

order MCSCP algorithm' ( see  a l s o  r e f .  2-6) is based 
on the  f a c t  t h a t  one can cons t ruc t  t h e  Hessian and 
the  grad ien t  of t h e  energy expression from t h e  
unique elements of one and two p a r t i c l e  dens i ty  
matrices. With t h e  recent  development of t h e  Uni- 
t a r y  Group C I  method, 'so*' dens i ty  matr ix  elements 
can be obtained even f o r  very l a rge  MCSCF roble- 
without excessive computational e f f o r t .  lo*lp A l t e r -  
na t ive ly ,  one can ob ta in  these  dens i ty  matr ix  ele- 

and t h i s  technique has proven t o  be q u i t e  p r a c t i c a l  
f o r  t r a d i t i o n a l  MCSCF problems. 

ii- 

-*14 -hz4 -'34 

ments by r o r t i n g  a conventional C I  formula tape.' a -  

The energy of a genera l  MCSCF wavefunction 

M I  
T I  Ck a 

can be expressed as follows 

where 

$ 9  - (i) - 
94 

and the  C I  vec tors  (CAI. 

1-  

and SFU i J  a r e  s t r u c t u r e  f ac to r s .  Var ia t ions  in 
eqn.(2) a r e  introduced by means of exponential  uni- -123 0 0 

t a r y  t ransformationsu of t h e  molecular o r b i t a l s  7 2 4  0 0 

6 2  " :23 :2) 

(0,) 
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where Fi and Gi a r e  Tow genera tors  which de- 
f i n e  the  non-redundant o r b i t a l  and C I  mixings a t  
f i r s t  and second order respec t ive ly ,  ( i .e. ,  $i 
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generate_. th non-iaro element# of t h e  ia row of 
3 and Q, generates the  non-zero elements of t h e  
i.th rw of ~ 2 ) .  The energy expression is then 
expanded t o  second order  i n  terms of t he  non- 
redundant va r i ab le s  of t he  genera tors  of t h e  two 
un i t a ry  transformations.  

The cont r ibu t ions  t o  grad ien t  and HesEian can- 
be obtained q u i t e  aimply i n  terme of t h e  P and Q 
row generators.  

- W I E I I T I  

DRBITN R t X l ~  

I I 
TI DIjU (*I tj Io) t k  ti) . DWlk ($2  $3 lgl +k W) Ph (1. 1 )  

Ph (1, 2) - 1 If x > 1 

= -1 i f  x < I ( 6 )  

C.I. IIIXI116f 

HESSIM TERMS --- 

ORBITAL-ORBITAL INTERACTIONS 

C. I .-ORBITAL INTERACTIQS 

c. 1. - c. I .  I~RACTIMIS 

RECALL THERE I S  ONLY ONE Q TYPE C. I. TERM 

DIAGONAL ELECENT OF THE C. I. - C. I. HESSIM 

The DMD-MCSCF algorithm is out l ined  i n  
Figure 1. 

K S C F  ALGORITHM 

1. CONFIGURATION GENERATION 

2. C. I. FORWLA GENERATION 

3. D. M. SORT OF TIE C. I. FORMLAS 

4. HESSIAN FORMLA GENERATION 

5. HCSCF ITERATIONS 

a .  

b. 

E. 

d. 

e. 

ORTH6GOWALIZATION OF THE ORBITALS 

INTE6RAL TRANSFORMTION 

CONSTRUCTION AND DIAGONALIZATION OF THE HAMILTDNIAN 

CONSTRUCTION OF THE HESSIAN AN0 THE GRADIENT, FOLLOWED 
BY THE SOLUTION OF THE LINEAR EQUATIONS 

APPROXIMTE UNITARY TRANSFORMATIOti OF THE ORBITALS 

Figure 1. 

As noted by Siegbahn, HeilberR. Roos. b Lew' (see  
r e f .  2).  t he  dens i ty  matrix elements which involve 
only core o r b i t a l s  need not be t r ea t ed  separa te ly  
and var ious  tvo e lec t ron  dens i ty  matrix elements 
i n  which t w o  of t h e  ind ices  r e f e r  t o  core o r b i t a l s  
may a l s o  be grouped together.  The Fock operator 
expressions employed by Siegbahn, e t  a l .  i n  the  
cons t ruc t ion  of t h e  grad ien t  may a l s o  be used t o  
advantage i n  t h e  conetruction of t h e  CI-orb i ta l  
por t ion  of t h e  Hessian. Furthermore, t he  dens i ty  
matrix elements whose ind ices  r e f e r  only t o  core 
o r b i t a l s  do not  cont r ibu te  t o  the  CI-orbital  por- 
t i on  of t h e  Hessian. 
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Finally ve note several advantages obtained 
by employing the eigenvectors of the Hamiltonian in 
this technique. 
the CI vectors in the expansion of the energy to 
obtain a variational algorithm. This, of course, 
allows one to address much larger MCSCF problem. 
Second, the CI-CI portion of the Hessian and the 
CI terms in the gradient are diagonal and zero re- 
spectively. 
elements of the unitary generators to be simpli- 
fied. Finally, redundant variables are not always 
easily identified in large MCSCF calculations. 
However, when the root of the Hamiltonian which is 
being optimized is an eigenvector of the Hamiltoni- 
an, redundant variables generally give rise to 
zeros in the gradient and can be easily detected. 

First one need not include all of 

This allows the equations for the 

There are perhaps two points of primary 
interest in evaluating the convergence properties 
of this alogritb. The first point being the be- 
havior of this procedure when poor starting orbi- 
tals are employed. The second point is concerned 
with the number of CI vectors which must be inclu- 
ded in large problems to obtain a reasonable rate 
of convergence. 

In a large number of MCSCF problems one does 

This is especially true if the MCSCF wave- 
not possess a very good choice of starting orbi- 
tals. 
function contains several configurations which 
differ from one another by (spin orbital) single 
excitations. In this case the Hessian may posses 
very small and even negative eigenvalues. 
means have been proposed to shift the eigenvalues 
(or alternatively the diagonal elements)’’ of the 
Hessian or to take a step in the direction indica- 
ted by the eigenvector which corres onds to the 
negative eigenvalue of the Hessian.! These tech- 
niques often yield disappointing results especial- 
ly when applied to problems where the MCSCF 
reference contains CSF’s which differ by a single 
excitation. Instead, a super CI technique has 
been found to possess a much larger radius of con- 
vergence1 as demonstrated in Table I. In this 
method one constructs an augmented Bessian matrix 
l*lcds in analogy with the Singles Hamiltonian 

Various 

SUPER - C. 1. APPROACH 

Figure 2. 

constructed in Generalized Brillouin Theorem dg0- 
rithas. 
matrix oriented approach allows this matrix to be 
constructed in a much more efficient manner than 
the traditional contraction type procedures. 
This method ia articularly attractive as quadra- 
tic convergence’ is very often obtained (when all 

It is important to note that a density 

CI coupling term are included) in this procedure 
when a reasonable set of orbitals has been obtained. 
Moreover, a simple scheme can be devised to correct 
the eigenvector of this matrix, when it is,not 
dominated by the MCSCF reference and further in- 
crease the radius of convergence attained by this 
technique. 

In the following tables the results of several 
MCSCF calculations are presented in which the num- 
ber CI vectors included in the Hessian has been 
varied. 

TABLE I. BeOaBb 3 CSF SUPER CI ALGORITHM 

Iteration 
ld 
2 
3 
4 
5 
6 
7 
8 

Energy (a.u.) AE 
-89.424317 - 
-89.466285 4.20 E-2 
-89.495331 2-90 E-2 
-89.503767 8.44 E-3 
-89.505765 2.00 E-3 
-89.506026 2.60 E-4 
-89.506033 7.99 E-6 
-89.506034 1.13 E-8 

AC 
2.56 E-1 
2.29 E-1 
1.13 E-1 
6.62 E-2 
1.53 E-2 
5.07 E-4 
6.57 E-? 
1.42 E-12 

a)core 4u27r4, core 4u5unc 
b)Bauschlicher-Yarkony Basis, J. Chem. Phys. 72, 

‘)A : Z A Z  

d)Damping performed, the Hessian possessed two ne- 

and core 402n’7r 

1138 (1980) 
see eqn. (4) 

ij ’ 

gative eigenvalues. SCF starting guess employed. 

TABLE 11. APPROXIMATE SUPER CIa 

Iteration Enernv (a.u) AE A 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

-89.424317 
-89.462099 
-89.487145 
-89.497525 
-89 .SO1648 
-89.503637 
-89.504713 
-89.505311 
-89.505642 
-89.505824 

- 
3.78 E-2 
2.50 E-2 
1.04 E-2 
4.12 E-3 
1.99 E-3 
1.08 E-3 
5.98 E-4 
3.31 E-4 
1.82 E-4 

.162 
,137 

8.36 E-2 
2.93 E-2 
1.40 E-2 
8.40 E-3 
5.00 E-3 
2.82 E-3 
1.54 E-3 
8.19 E-4 

‘)The second order CI tenw were not included in 
this calculation. 

The importance of including or excluding a 
particular CI vector can be placed on a more quan- 
titative basis by means of the simple perturbation 
arguments presented below. 

Consider the Newton-Raphson linear equations 
induced by a two CSF, two orbital problem, 

(12) 
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vhere 8, C and A represent  t h e  orb.-orb., CI-orb., 
and C I - C I  por t ions of the  Hessian respec t ive ly .  A 
and y a r e  the unique elements of t h e  generators  
of the  uni ta ry  t ransformations and g is t h e  orbi-  
t a l  gradient  ( the  C I  g rad ien t  is zero by v i r t u r e  of 
t h e  f a c t  t h a t  the  secular  is assumed t o  have been 
solved on the preceding i t e r a t i o n ) .  We then have.' 

; B 1+c+ .i. . 
B (  A: ) 

(Recall A a E' - E' where 1 is t h e  root  being 
optimized.) This per turba t ion  may be general ized 
t o  account f o r  t h e  i n t e r a c t i o n  between a par- 
t i c u l a r  C I  vec tor  and a l l  of t h e  o r b i t a l  mixinns. 
For the  purposes of t h i s  s tudy  it s u f f i c e s  t o  
consider  these i n t e r a c t i o n s  a sum of decoupled two 
by two problems and monitor t h e  l a r g e s t  perturba- 
t i o n  t e q  (C'/AB) assoc ia ted  with t h e  las t  C I  
vector  66 be included in t h e  problem. 
are a l s o  presented i n  Tables I11 and I V .  I t  i s  
i n t e r e s t i n g  t o  note  t h a t  t h i s  per turba t ion  term 
d i f f e r s  f r a n  the  second-order per turba t ion  expres- 
s ion  obtained by DasZ1 i n  t h a t  the  energy d i f f e r -  
ence appearing i n  the  denominator is weighted a 
diagonal element from t h e  o r b i t a l  s e c t i o n  of the  
Hessian. 

These terms 

The r e s u l t s  of a number of MCSCF ca lcu la t ions  
are sunuaarieed i n  the  following tab les .  

TABLE IIIa. 3 CSF Be0 CALCULATION WITH ONE C I  
ROOT EXCLUDED 

E AE A 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

-89.424317 
-89.465898 
-89.494027 
-89.502397 
-89.504267 
-89.505109 
-89.505550 
-89.505782 
-89.505903 
-89.505967 

- 
4.16 E-3 
2.81 E-2 
8.37 E-3 
1.87 E-3 
8.41 E-4 
4.41 E-4 
2.32 E-4 
1 . 2 1  E-4 
6 .3  E-5 

2.61 E- la  
2.28 E-1 
1.03 E-1 
2.82 E-2 
8.63 E-3 
3.71 E-3 
1.86 E-3 
9.58 E-4 
4.92 E-4 
.2.51 E-4 

"Damping employed t h i s  i t e r a t i o n  

TABLE I I Ib .  Be0 3 CSP MCSCP 

Largest sum of 
Root Per turbat ion Per turba t ion  

Term Contr ibut ions 

1 .18 .72 
2 .31 1.48 

TABLE I V .  FULL VALENCE '2' STATE ' Y  

OF MgOaeb 

Number of 0 30 90 
C I  Roots 
Itera- 
t i o n  A' A AE A AE A 

1 - 9.E-5 - l.E-4 - 2.E-4 
2 -3.E-6 6.E-6 -4.E-6 l.E-5 -5.E-6 3.k-6 
3 -9.E-7 2.E-6 -5.E-7 2.E-6 -8.E-7 1.E-7 

-274.514267 -274.514268 -274.514268 Energy 

a)Yoshimine-McLean molecular DZP S l a t e r  b a s i s  with 
a d i f f u s e 3 ~ 3 u n c t i o n  (.855) on Mg. 142 CSF's i n  

b)The m a x i m u m  per turba t ion  term (.43 ) w a s  obtained 

c2v 

from the22eigenvec tor  of t h e  Hamiltonian. 

The per turba t ion  cont r ibu t ions  of t h e  higher  
e igenvectors  of t h e  Hamiltonian are of ten  l a r g e r  
than t h e  per turba t ion  estimate of t h e  cont r ibu t ion  
of many of t h e  lover  r o o t s  of t h e  Hamiltonian. 
While t h e  inc lus ion  of a few of t h e  C I  vec tors  i n  
the v a r i t i o n a l  problem can dramatical ly  a f f e c t  the  
convergence c h a r a c t e r i s t i c  of t h i s  MCSCF algorithm 
f a r  from convergence. One can not  expect any sub- 
s t a n t i a l  advantage from t h i s  procedure near  con- 
vergence f o r  a general  (containjng s i n g l e  exci ta-  
t i o n s )  MCSCP wavefunction. 

The DMD-MCSCF algori thm provides a simple and 
e f f i c i e n t  means f o r  construct ing the  Hessian and 
t h e  gradient  of a general  MCSCP energy expression. 
The s t u d i e s  re or ted  i n  t h e  paper and recent  work 
on MgO and BeO" ind ica tes  t h a t  t h i s  method is 
capable of providing t h e  convergence behavior 
needed t o  perform p r a c t i c a l  quantum chemical cal- 
c u l a t  ions. 
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